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Synopsis 
The work described in the present paper was performed to establish stress-strain-time rela- 

tionships a t  plastic sheet thermoforming temperatures. The relationships are correlated with 
sheeeforming “formability.” Specimens of poly(methy1 methacrylate) a t  165°C and high- 
impact polystyrene at  122°C were extended to large strains a t  constant cross-head velocities. 
Initial strain rates were between 4.2 x 10-3/sec and 1.6 X 10-*/set. I t  was found that !he 
flow stress u was related to the true strain e and the elapsed time t by a relation u = K1” en, 
where K is a constant and n and m‘ are indices. The value of n for both materials was approxi- 
mately one. The value of m‘ was -0.052 and -0.33 for poly(methy1 methacrylate) and high- 
impact polystyrene, respectively. Tests were also performed in which the cross-head velocity 
was increased in steps. It was found that the flow stress in these tests followed the same rela- 
tionship aa in the constant cross-head velocity tests. 

INTRODUCTION 
Extensional flow of polymer melts occurs in many polymer-forming processes, 

for instance, fiber spinning, film blowing, flow through a die, and thermoforming 
of sheets. 

Past work in studying extensional flow has involved some form of tensile 
testing under constant load, constant s t r e s ~ , ~ ~ ~  constant strain r ~ t e , ~ - ~  or 
other.lOsll Indirect methods, such as studying the flow from a reservoir into a 
die3.12,13 or studying the drawing down of extrudate from a die13-15 have also 
been used, with the advantage of being close to processing practices. 

The measurement of steady-state elongational viscosities has been a prime 
aim; however, the nonsteady flow before the steady state sets in has also been 
examined ; this flow involves viscoelastic and viscous components. Meissner5 
found that the stress-strain curves of a low-density polyethylene melt a t  150°C 
showed a t  low strain rates an increase in the stress up to a limiting value which 
corresponds to an extensional viscosity. At higher strain rates, no limiting value 
of the stress was obtained, rather the stress-strain relation had an S-shaped curve 
similar to the tensile behavior of a rubber-like material. Srnithl6 found, with 
polyisobutylene and also styrene-butadiene rubber vulcanizate, which can be 
considered “crosslinked molten plastics” a t  room temperature, that the true flow 
stress determined from tensile tests a t  constant strain rates is separable into a 
time effect and a strain effect. 
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The work described in the present paper was performed to establish stress- 
strain-time relationships a t  plastic sheet thermoforming temperatures. In  a 
later paper,” the relationships will be correlated with sheet-forming “formabil- 
ity.” The materials of interest were poly(methy1 methacrylate) (PMMA) and 
high-impact polystyrene (HIP), and the thermoforming temperatures chosen 
were 165°C for PMMA and 122°C for HIP. We are not aware of any published 
work on the extensional flow of high-impact polystyrene at thermoforming 
temperatures; however, Ballman4 reports on constant strain-rate tests on poly- 
styrene a t  300°F (149°C) and strain rates below 2.2 X 10-2/sec. He  found that 
steady-state (viscous) flow set in after strains of 0.2 and less. Vinogradov et a1.8 
found in constant strain rate tests on polystyrene a t  130°C that steady-state flow 
was achieved a t  strain rates below 6 X 10-3/sec but not above. The maximum 
true strain in their experiments was about two. 

Williams’O tested poly(methy1 methacrylate) in tension at 160°C and strain 
rates between 3.3 X lO-*/sec to 8.3 X 10-*/set. He reports negligible de- 
pendence of stress on time. 

EXPERIMENTAL 

Materials 
The investigation was conducted using ‘/rin.-thick clear PMMA supplied by 

I.C.I. and 1/8-in.-thick white opaque HIP  sheets extruded by Garnite Plastics, 
New Zealand. Specimens machined from the sheet had the dimensions shown 
in Figure 1. 

Apparatus 
All tests were performed on a TTC Standard Instron testing machine with the 

Temperature in the environment chamber was Instron environmental chamber. 

1 Specimen thickness: PMMA = 
HIP = /i 

Fig. 1. Dimensions of the tensile specimens. 
I 
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controlled by the Instron temperature controller. Exact temperature of the test 
specimens was measured using copper-Constantan wire thermocouples, taped to 
the specimens. In  order to minimize the amount of slippage in the grips due to 
softening of the specimens on heating up, spring-loaded jaws were used. It was 
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Fig. 2.  Relation between true stress u and true strain for PMMA a t  165°C from constant 
cross-head velocity tests a t  initial strain rates in the range of 4.2 X lop3 to 1.6 X lO-l/sec. 
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Fig. 3. Relation between true stress u and true strain for HIP a t  122°C from constant cross- 
head velocity tests at initial strain rates in the range of 4.2 X to 1.6 X lO-'/sec. 

found that in both materials 96% of the Instron cross-head movement was 
elongation of the gauge length of the tensile specimens. 

Procedure 
A few trial tests were required to calibrate the temperaturetime relationships 

for different power inputs to the environmental chamber. The chamber with the 
necessary clamping jaws was initially heatedup for about l l / z  hr. After that, the 
specimen was mounted. Two copper-Constantan wire thermocouples were 
used to  measure the temperature of the specimen near the gauge length. One of 
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Fig. 5 .  Relation between true stress u and elapsed time t for HIP a t  122°C from const.ant 
cross-head velocity tests. Each curve represents a given engineering strain e.  

the thermocouples was placed in a '/l;-in.-diameter hole drilled to the midthickness 
of the specimen. The other thermocouple was taped to  the surface of the speci- 
men to investigate the difference in temperature between the center of the mate- 
rial and its surface. A heating time of roughly 25 min was arbitrarily chosen, 
but the exact heating time was not essential since the critical factor was the 
exact temperature of the tensile test specimen a t  testing. It was found that the 
temperature difference between 'the center of the material and its surface was 
less than 0.5"C. 
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True Strain, h; 
Fig. 6. Relation between true stress u and true strain c at constant elapsed time t for PMMA 

at 165°C. Data are from constant cross-head velocity tests. 

The tensile testing of the materials followed a parallel procedure to the calibra- 
tion of the environmental chamber. When the chamber was heated up, the 
specimen was quickly set up in the grips. With the two thermocouples taped to 
the surface about 1 in. apart along the gauge length, the specimen' was heated to 
the exact required temperature which was the temperature a t  which the thermo- 
forming experiment described in a following paper was carried out." For 
PMMA specimens, this was 165"C, and for HIP, 122°C. Initial strain rates 
ranging from 4.2 X At least four specimens 
were tested at any one cross-head speed. Two of the specimens were tested at  

to 1.6 X lO-l/sec were used. 



EXTENSIONAL FLOW 1215 

I I I I I I I I  I I I I I I '  

15 s e c .  

0 30 sec.  

e 60 sec.  

- 

1 

h 

the exact mentioned temperature while the other two were tested a t  tempera- 
tures 1°C above and 1°C below this exact temperature to ensure that the tests 
were correctly conducted. At various 
extensions, engineering stress temperature plots were drawn to ensure that the 
stress a t  the required temperatures lay about halfway between the stress of 
temperatures 1°C above and 1°C below the required temperatures. True 
stress-true strain curves for the materials a t  the required temperatures were then 
calculated from the load-extension curve a t  the required temperatures. Very 

All tests were duplicated if necessary. 



1216 

h 
d 
m n 
v 

Q 
0 

(0 
m 

h 
U v: 

KJ 

d 
h 

2 
d 
M 

w 

LA1 AND HOLT 

25 

20 

151 

101 

51 

I I I I 1 
1 .o 2.0 

Engineering Strain, e .  

Fig. 8. Relation between engineering stress ue and engineering strain e for PMMA at 165°C 
from step-speed tests. Constant cross-head velocity data are shown dotted. 
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Fig. 9. Relation between engineering stress ue and engineering strain e for HIP a t  122OC from 
step-speed tests. Constant cross-head velocity data are shown dotted. 

little scatter was observed in the stress-strain curves for the specimens tested at 
the required temperature and cross-head speed. In calculating true stress, an 
effective Poisson ratio of True strain was calculated from the 
cross-head movement since, as mentioned above, 96% of the total cross-head 
movement was elongation of the gauge length. 

was assumed. 

RESULTS AND DISCUSSION 

Figures 2 and 3 show the true stress-true strain curves at various cross-head 
velocities for PRIMA at 165°C and HIP  a t  122°C. Unlike HIP, which can be 
stretched without breaking to an engineering strain greater than four, it was 
found that PMMA specimens fractured. The stress and strain at fracture in- 



1218 

500 

100 

50 

h 

.A Y) 

a 

b 

v 

In Y) 

u 
LI II) 

m 
3 u H 

10 

5 

I 

LA1 AND HOLT 

I I I I I I I I I  I I I I 1  

Elapsed 
Time, t 

0 6 sec 

@ 12 sec 

8 18 sec 

24 sec 

30 sec 

60 sec 

Temperature = 165OC. 

I I I I I I I I I  I I I I 1  
11 0.05 0.1 0.5 

True Strain, 6. 

Fig. 10. Data points of true stress u and true strain c a t  constant elapsed time t for PMMA 
from stepspeed change test. The line shown is that of Fig. 6. 

creased with increasing cross-head speed. Such a dependence of fracture on 
strain rate has been observed in rubbery materials by others. 18--20 

After fracture, the two halves of the PMMA specimen retracted almost to the 
initial gauge length. The deformation of HIP, however, seemed to be less re- 
coverable. 

The stress-strain results were analyzed along similar lines to those followed by 
Smith16 with amorphous elastomers. The logarithm of the true stress is plotted 
against the logarithm of the elapsed time a t  constant engineering strain in Fig- 
ures 4 and 5 for PMMA and HIP, respectively. The logarithm of the true stress 
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Fig. 11. Data points of true stress u and true strain t at constant elapsed time t for HIP, from 
stepspeed test. The lines shown are those in Fig. 7. 

is plotted against the logarithm of the true strain a t  constant elapsed time in 
Figures 6 and 7 for PMMA and HIP, respectively. Data points in all these 
figures could be fitted by straight lines, except for HIP at small times and strains 
(Fig. 5). Hence, a constant velocity stress-strain-time relationship of the form 
u = Ktrn'en is obeyed by these two materials. Values of m' and n are given in 
Table I. This sort of relationship is also followed by the data a t  constant strain 
rates of Smith16 for SBR vulcanizates and polyisobutylene. 

To determine whether the relationship u = Ktm'en held for only constant cross- 
head speed tests or, on the contrary, was valid for more general loading patterns, 
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TABLE I 
Values of m' and R in u = K t m ' e n  for PMMA and HIP 

Material m' n 

PMMA 
HIP 

-0.052 
-0.33 

1 .o 
1 .1  

tensile tests were performed on PMMA and HIP  a t  165°C and 122"C, respec- 
tively, in which the cross-head speed was changed in steps during the straining. 
The resulting engineering stress-engineering strain curves are plotted for PMMA 
in Figure 8, and for HIP  in Figure 9. Engineering stress-engineering strain 
curves a t  constant cross-head speeds are included in Figures 8 and 9 for com- 
parison. It can be noted that a step change in cross-head speed does not cause a 
step change in stress so viscous (strain rate dependent) flow must be negligible in 
these materials a t  these temperatures. Stress and strain data a t  various elapsed 
times from the step-change tests are compared with the data from constant 
cross-head speed test in Figures 10 and 11. It can be seen that two sets of data 
coincide. 

The conclusion is that the relation u = Ktm't" is valid for a general loading 
sequence a t  these temperatures. It should be noted t,hat a sequence of decreas- 
ing cross-head speed was not investigated. 

CONCLUSION 

At the thermoforminp temperatures of 165°C for PMMA and 122°C for 
HIP, a stress-strain-time relationship of the form Q = Ktm'tn is found. 
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